深度神经网络中的建筑进步导致了跨越一系列计算机视觉任务的巨大飞跃。神经建筑搜索(NAS)并没有依靠人类的专业知识,而是成为自动化建筑设计的有前途的途径。尽管图像分类的最新成就提出了机会,但NAS的承诺尚未对更具挑战性的语义细分任务进行彻底评估。将NAS应用于语义分割的主要挑战来自两个方面:(i)要处理的高分辨率图像; (ii)针对自动驾驶等应用的实时推理速度(即实时语义细分)的其他要求。为了应对此类挑战,我们在本文中提出了一种替代辅助的多目标方法。通过一系列自定义预测模型,我们的方法有效地将原始的NAS任务转换为普通的多目标优化问题。然后是用于填充选择的层次预筛选标准,我们的方法逐渐实现了一组有效的体系结构在细分精度和推理速度之间进行交易。对三个基准数据集的经验评估以及使用华为地图集200 dk的应用程序的实证评估表明,我们的方法可以识别架构明显优于人类专家手动设计和通过其他NAS方法自动设计的现有最先进的体系结构。
translated by 谷歌翻译
Color fundus photography and Optical Coherence Tomography (OCT) are the two most cost-effective tools for glaucoma screening. Both two modalities of images have prominent biomarkers to indicate glaucoma suspected. Clinically, it is often recommended to take both of the screenings for a more accurate and reliable diagnosis. However, although numerous algorithms are proposed based on fundus images or OCT volumes in computer-aided diagnosis, there are still few methods leveraging both of the modalities for the glaucoma assessment. Inspired by the success of Retinal Fundus Glaucoma Challenge (REFUGE) we held previously, we set up the Glaucoma grAding from Multi-Modality imAges (GAMMA) Challenge to encourage the development of fundus \& OCT-based glaucoma grading. The primary task of the challenge is to grade glaucoma from both the 2D fundus images and 3D OCT scanning volumes. As part of GAMMA, we have publicly released a glaucoma annotated dataset with both 2D fundus color photography and 3D OCT volumes, which is the first multi-modality dataset for glaucoma grading. In addition, an evaluation framework is also established to evaluate the performance of the submitted methods. During the challenge, 1272 results were submitted, and finally, top-10 teams were selected to the final stage. We analysis their results and summarize their methods in the paper. Since all these teams submitted their source code in the challenge, a detailed ablation study is also conducted to verify the effectiveness of the particular modules proposed. We find many of the proposed techniques are practical for the clinical diagnosis of glaucoma. As the first in-depth study of fundus \& OCT multi-modality glaucoma grading, we believe the GAMMA Challenge will be an essential starting point for future research.
translated by 谷歌翻译
了解神经网络的黑匣子预测是具有挑战性的。为实现这一目标,早期的研究已经设计了影响功能(IF)来测量删除神经网络上的单个训练点的效果。然而,用于计算IF易碎的经典隐含HESSIAN-向量产品(IHVP)方法,以及在神经网络的背景下的理论分析仍然缺乏。为此,我们利用神经切线内核(NTK)理论来计算具有正则化均方损耗的神经网络,并证明近似误差对于两层释放的宽度足够大,可以任意较小网络。我们分析了在过度参数化制度中的经典IHVP方法绑定的错误,以了解它的何时何种以及原因。详细说明,我们的理论分析揭示了(1)IHVP的准确性取决于正则化术语,并且在弱规则化下非常低; (2)IHVP的准确性与相应培训点的概率密度具有显着相关性。我们进一步借用NTK的理论来了解IFS更好,包括量化有影响力样本的复杂性,并描绘在训练动态期间的IFS的变化。现实世界数据的数值实验证实了我们的理论结果并展示了我们的研究结果。
translated by 谷歌翻译
在现实世界数据集中,结果标记歧义和主观性是无处不在的。尽管从业者通常以临时方式将所有数据点(实例)的模棱两可的结果标签结合在一起,以提高多级分类的准确性,但缺乏通过任何最佳标准来指导所有数据点标签组合的原则方法。为了解决这个问题,我们提出了信息理论分类准确性(ITCA),该标准可以在预测准确性(预测标签与实际标签一致)和分类分辨率(可预测的标签)(可预测的标签)之间进行平衡,这是平衡的。指导从业者如何结合模棱两可的结果标签。为了找到ITCA指示的最佳标签组合,我们提出了两种搜索策略:贪婪的搜索和广度优先搜索。值得注意的是,ITCA和两种搜索策略适应所有机器学习分类算法。再加上分类算法和搜索策略,ITCA有两个用途:提高预测准确性并识别模棱两可的标签。我们首先通过两种搜索策略来找到合成和真实数据的正确标签组合,首先验证ITCA是否可以实现高精度。然后,我们证明了ITCA在各种应用中的有效性,包括医学预后,癌症存活预测,用户人口统计预测和细胞类型分类。我们还通过研究Oracle和线性判别分析分类算法来提供对ITCA的理论见解。 Python软件包ITCA(可在https://github.com/jsb-ucla/itca上找到)ITCA和搜索策略。
translated by 谷歌翻译
Efforts to improve the adversarial robustness of convolutional neural networks have primarily focused on developing more effective adversarial training methods. In contrast, little attention was devoted to analyzing the role of architectural elements (such as topology, depth, and width) on adversarial robustness. This paper seeks to bridge this gap and present a holistic study on the impact of architectural design on adversarial robustness. We focus on residual networks and consider architecture design at the block level, i.e., topology, kernel size, activation, and normalization, as well as at the network scaling level, i.e., depth and width of each block in the network. In both cases, we first derive insights through systematic ablative experiments. Then we design a robust residual block, dubbed RobustResBlock, and a compound scaling rule, dubbed RobustScaling, to distribute depth and width at the desired FLOP count. Finally, we combine RobustResBlock and RobustScaling and present a portfolio of adversarially robust residual networks, RobustResNets, spanning a broad spectrum of model capacities. Experimental validation across multiple datasets and adversarial attacks demonstrate that RobustResNets consistently outperform both the standard WRNs and other existing robust architectures, achieving state-of-the-art AutoAttack robust accuracy of 61.1% without additional data and 63.7% with 500K external data while being $2\times$ more compact in terms of parameters. Code is available at \url{ https://github.com/zhichao-lu/robust-residual-network}
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
基于嵌入的神经主题模型可以通过将它们嵌入均匀的特征空间来明确表示单词和主题,从而显示出更高的解释性。但是,嵌入训练没有明确的限制,从而导致更大的优化空间。此外,仍然缺乏对嵌入的变化以及对模型性能的影响的清晰描述。在本文中,我们提出了一个嵌入式化的神经主题模型,该模型应用于单词嵌入和主题嵌入的特殊设计的训练约束,以减少参数的优化空间。为了揭示嵌入的变化和角色,我们将\ textbf {均匀性}引入基于嵌入的神经主题模型中,作为嵌入空间的评估度量。在此基础上,我们描述了嵌入在训练过程中如何通过嵌入均匀性的变化而变化。此外,我们通过消融研究证明了基于嵌入的神经主题模型中嵌入的变化的影响。在两个主流数据集上实验的结果表明,我们的模型在主题质量和文档建模之间的和谐方面显着优于基线模型。这项工作是利用统一性来探索基于嵌入的神经主题模型嵌入的变化及其对模型性能的影响,从而获得了我们的最佳知识。
translated by 谷歌翻译
尽管具有生成对抗网络(GAN)的图像到图像(I2I)翻译的显着进步,但使用单对生成器和歧视器将图像有效地转换为多个目标域中的一组不同图像仍然具有挑战性。现有的I2i翻译方法采用多个针对不同域的特定于域的内容编码,其中每个特定于域的内容编码器仅经过来自同一域的图像的训练。然而,我们认为应从所有域之间的图像中学到内容(域变相)特征。因此,现有方案的每个特定于域的内容编码器都无法有效提取域不变特征。为了解决这个问题,我们提出了一个灵活而通用的Sologan模型,用于在多个域之间具有未配对数据的多模式I2I翻译。与现有方法相反,Solgan算法使用具有附加辅助分类器的单个投影鉴别器,并为所有域共享编码器和生成器。因此,可以使用来自所有域的图像有效地训练Solgan,从而可以有效提取域 - 不变性内容表示。在多个数据集中,针对多个同行和sologan的变体的定性和定量结果证明了该方法的优点,尤其是对于挑战i2i翻译数据集的挑战,即涉及极端形状变化的数据集或在翻译后保持复杂的背景,需要保持复杂的背景。此外,我们通过消融研究证明了Sogan中每个成分的贡献。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译